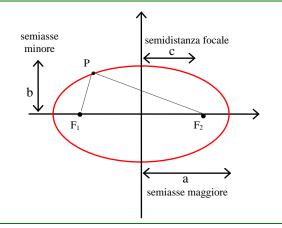
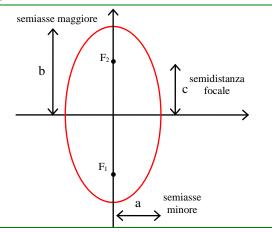
Ellisse

definizione

L'ellisse è il luogo geometrico dei punti del piano tali che la somma delle distanze da due punti fissi F_1 e F_2 detti fuochi è costante: $\overline{PF_1} + \overline{PF_2} = costante$





per la dimostrazione dell'equazione clicca <u>QUI</u> oppure vedi la sezione Teoria e Pratica

ellisse di centro l'origine e fuochi sull'asse delle x ellisse di centro l'origine e fuochi sull'asse delle y equazione canonica $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ a > ba < brelazione tra i parametri a, b, c $b^{2} = a^{2} - c^{2}$ $c^{2} = a^{2} - b^{2}$ $a^2 = b^2 - c^2$ $c^2 = b^2 - a^2$ $\int b^2 = a^2 + c^2$ $a^2 = b^2 + c^2$ coordinate del fuoco $F_1(0;-c)$ $F_2(c; 0)$ $F_1(-c; 0)$ $F_2(0;c)$ eccentricità $e = \frac{c}{a}$ $e = \frac{c}{h}$ 0 < e < 10 < e < 1

in generale: l'eccentricità è il rapporto tra la semidistanza focale e il semiasse maggiore

osservazioni

se a = b l'ellisse degenera in una circonferenza di centro l'origine, raggio a ed equazione $x^2 + y^2 = a^2$

ricerca dell'equazione di una ellisse

equazione dell'ellisse noti i fuochi ed il semiasse maggiore		
$\overline{PF_1} + \overline{PF_2} = 2a$	• si applica la definizione di ellisse ricordando che la costante è uguale a 2 <i>a</i>	
$\sqrt{(x+c)^2 + y^2} + \sqrt{(x-c)^2 + y^2} = 2a$	• si calcolano le due distanze $\overline{PF_1}$ e $\overline{PF_2}$	
$(x+c)^2 + y^2 = \left(2a - \sqrt{(x-c)^2 + y^2}\right)^2$	si isola il primo radicale e si elevano al quadrato entrambi i membri	
$\left[a\sqrt{x^2 - 2cx + c^2 + y^2}\right]^2 = (a^2 - cx)^2$	si sviluppano i calcoli isolando il radicale rimasto e di nuovo si elevano al quadrato entrambi i membri	
$b^2 x^2 + a^2 y^2 = a^2 b^2$	si sviluppano i calcoli e si ottiene l'equazione dell'ellisse in forma non canonica	

Ellisse

equazione dell'ellisse passante per due punti $A(x_1,y_1)$ e $B(x_2,y_2)$		
$\alpha x^2 + \beta y^2 = 1$	• nell'equazione dell'ellisse in forma canonica si sostituiscono $\frac{1}{a^2} = \alpha$ e $\frac{1}{b^2} = \beta$	
$\alpha x_1^2 + \beta y_1^2 = 1$ $\alpha x_2^2 + \beta y_2^2 = 1$ passaggio per A passaggio per B	si sostituiscono uno alla volta le coordinate dei punti nell'equazione precedente	
$\begin{cases} \alpha x_1^2 + \beta y_1^2 = 1\\ \alpha x_2^2 + \beta y_2^2 = 1 \end{cases}$	• si risolve il sistema di primo grado nelle incognite α e β	
$\alpha x^2 + \beta y^2 = 1$	si sostituiscono i valori ottenuti nell'equazione iniziale ottenendo così l'equazione richiesta	

in generale

per trovare l'equazione di una ellisse è necessario:

- avere due condizioni (scelte tra: fuoco, semiassi, passaggio per un punto, eccentricità, retta tangente)
- trasformare ogni condizione in una equazione
- ottenere il sistema delle due equazioni nelle incognite $a^2 e b^2$
- risolvere il sistema e trovare i valori di $a^2 e b^2$
- sostituire i valori ottenuti nell'equazione dell'ellisse, ottenendo l'equazione cercata nota che nella ricerca dell'equazione dell'ellisse:

- o le incognite sono a^2 e b^2 e non a e b
- o conviene imporre le condizioni note a partire dall'equazione dell'ellisse in forma non canonica $b^2x^2+a^2y^2=a^2b^2$

ricerca delle equazioni delle rette tangenti all'ellisse

equazioni delle rette tangenti condotte da un punto $P_0(x_0,y_0)$ esterno all'ellisse		
$y - y_0 = m(x - x_0)$	• si scrive l'equazione del fascio di rette proprio di centro $P_0(x_0,y_0)$	
$y = y_0 + m(x - x_0)$	si ricava la y dell'equazione del fascio	
$b^2x^2 + a^2[y_0 + m(x - x_0)]^2 = a^2b^2$	• si sostituisce la y nell'equazione dell'ellisse in forma non canonica $b^2x^2 + a^2y^2 = a^2b^2$	
$y - y_0 = m_1(x - x_0)$ $y - y_0 = m_2(x - x_0)$	 si sviluppano i calcoli e si ordina l'equazione rispetto alla <i>x</i> si ricava il Δ e lo si impone uguale a 0 (condizione di tangenza tra retta ed ellisse) si risolve l'equazione di secondo grado nell'incognita m ricavando i valori m₁ ed m₂ si sostituiscono m₁ ed m₂ nell'equazione del fascio ottenendo le equazioni delle rette tangenti 	
equazione della retta tangente nel punto $P_0(x_0, y_0)$ dell'ellisse: formula di sdoppiamento		
$b^2 x^2 + a^2 y^2 = a^2 b^2$	 si scrive l'equazione dell'ellisse in forma non canonica si pone x² = x₀ · x e y² = y₀ · y 	
$b^2 x_0 x + a^2 y_0 y = a^2 b^2$	 si sostituiscono le incognite sdoppiate nella equazione dell'ellisse sviluppando i calcoli si ottiene l'equazione della retta tangente nel punto P₀(x₀, y₀) 	

Ellisse

equazione delle rette tangenti di coefficiente angolare m assegnato		
y = mx + q	si scrive l'equazione del fascio di rette improprio con m assegnato	
$b^2x^2 + a^2[mx + q]^2 = a^2b^2$	• si sostituisce la y nell'equazione dell'ellisse in forma non canonica $b^2x^2 + a^2y^2 = a^2b^2$	
	• si sviluppano i calcoli e si ordina l'equazione rispetto alla \boldsymbol{x}	
$y = mx + q_1$	• si ricava il Δ e lo si impone uguale a 0 (condizione di tangenza tra retta ed ellisse)	
$y = mx + q_2$	• si risolve l'equazione di secondo grado nell'incognita q ricavando i valori di q_1 e q_2	
	• si sostituiscono q_1 e q_2 nell'equazione iniziale del fascio ottenendo le equazioni delle rette tangenti	
in alcuni problemi <i>m</i> si ricava nota la retta parallela o la perpendicolare alla retta tangente		

v 1.2

in alcuni problemi $\,m\,$ si ricava nota la retta parallela o la perpendicolare alla retta tangente

area e lunghezza dell'ellisse		
	$\mathcal{A}=\pi ab$	per $a=b$ l'ellisse diventa una circonferenza e la formula diventa quella dell'area del cerchio $\mathcal{A}=\pi r^2$
a a	$l = \pi \left[3(a+b) - \sqrt{(3a+b)(a+3b)} \right]$	la lunghezza si calcola solo come sviluppo in serie di un integrale curvilineo: un buon valore approssimato è dato dalla formula del matematico indiano Ramanujan